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A B S T R A C T   

Due to its implication in cancer treatment, the Warburg Effect has received extensive in silico investigation. Flux 
Balance Analysis (FBA), based on constrained optimization, was successfully applied in the Warburg Effect 
modelling. Yet, the assumption that cell types have one invariant cellular objective severely limits the appli-
cability of the previous FBA models. Meanwhile, we note that cell types with different objectives show different 
extents of the Warburg Effect. To extend the applicability of the previous model and model the disparate cellular 
pathway preferences in different cell types, we built a Nonlinear Multi-Objective FBA (NLMOFBA) model by 
including three key objective terms (ATP production rate, lactate generation rate and ATP yield) into one 
objective function through linear scalarization. By constructing a cellular objective map and iteratively varying 
the objective weights, we showed disparate cellular pathway preferences manifested by different cell types 
driven by their unique cellular objectives, and we gained insights about the causal relationship between cellular 
objectives and the Warburg Effect. In addition, we obtained other biologically consistent results by using our 
NLMOFBA model. For example, augmented with the constraint associated with inefficient mitochondria func-
tion, low oxygen availability, or limited substrate, NLMOFBA predicts cellular pathways supported by the 
biology literature. Collectively, our NLMOFBA model can help build a complete understanding towards the 
Warburg Effect in different cell types. Finally, we investigated the impact of glutaminolysis, an important 
pathway related to glycolysis, on the occurrence of the Warburg Effect by using linear programming.   

1. Introduction 

Background: Cancer cells use fermentation pathway in addition to 
respiration pathway for energy (ATP) production albeit fermentation 
pathway lowers the ATP yield (i.e. the number of ATP generated per 
substrate consumed). This phenomenon, first proposed by German 
biochemist Otto H. Warburg in 1920s, was named the Warburg Effect 
(Warburg, 1956). Warburg Effect is commonly observed in cancer cells 
and healthy proliferating cells (Liberti and Locasale, 2016; Sun et al., 
2019). Generally, healthy nonproliferating cells do not show the War-
burg Effect (Vander Heiden et al., 2009), but there are exceptions such 
as striated muscle cells and Sertoli cells (Oliveira et al., 2014; Schuster 
et al., 2015b). 

Due to the significance of the Warburg Effect in cancer, many 
computational models were proposed to explain the complicated cause 
of the Warburg Effect (Schuster et al., 2015b; Shan et al., 2018; Shestov 
et al., 2014). One technique, flux balance analysis (FBA), is a con-
strained optimization technique generally based on linear programming 
(Himmel and Bomble, 2020; Orth et al., 2010). FBA assumes that cells, 

subjected to cellular and environmental constraints, have optimization 
objectives resulted from the evolutional pressure. In FBA, the cellular 
objective is expressed as the objective function while the constraints are 
expressed as a set of equality and inequality relations. Different from the 
dynamic simulation using coupled ordinary differential equations, FBA 
is only concerned with the steady state chemical fluxes inside a bio-
logical network. As a result, FBA requires little information about the 
enzyme kinetics and metabolite concentrations for simulation. Prior 
attempts to simulate the Warburg Effect by FBA include the use of a 
large-metabolic network with >3000 reactions and a minimal model 
including three key reactions (Möller et al., 2018; Schuster et al., 2015a; 
Shlomi et al., 2011). Although powerful, the minimal model by Schuster 
et al. (2015a) is only applicable if the cells have one single objective to 
maximize the ATP production rate (i.e. the total number of ATPs 
generated from the available cellular resource and substrates). 

In fact, cell types can have multiple objectives, and different cell 
types may have different sets of objectives (Barclay, 2017; Oh et al., 
2009; Pfeiffer et al., 2001; Pfeiffer and Bonhoeffer, 2002; Vera et al., 
2003). Certain cell types (e.g. healthy proliferating cells and straited 
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muscle cells) demand a high ATP production rate for their growth or 
functioning (Barclay, 2017; Vander Heiden et al., 2009). From the 
perspective of the evolutionary game theory, cell types have the objec-
tive to maximize the ATP production rate when they are competing 
against other cells for the limited energy resource (Pfeiffer et al., 2001; 
Pfeiffer and Bonhoeffer, 2002). For example, cancer cells could have the 
objective to maximize the ATP production rate when invading the 
healthy cells. ATP yield is another common energy aspect of cellular 
pathways (Libretexts, 2020). ATP yield characterizes the cost- 
effectiveness of energy production while ATP rate characterizes the 
amount of energy production. Game theory suggests that some cell types 
(e.g. healthy nonproliferating cells) maximize the ATP yield when 
cooperating with each other to use the limited substrate in the most 
efficient manner (Pfeiffer et al., 2001; Pfeiffer and Bonhoeffer, 2002). 
Another objective is the production of lacate, which is an important 
molecule involved in many cellular processes (Archetti, 2014; Gatenby 
1995). 

We also note that different cell types show different extents of the 
Warburg Effect (Sun et al., 2019; Vander Heiden et al., 2009; Warburg, 
1956). Clearly, cancer cells and healthy proliferating cells are more 
likely to show the Warburg Effect than healthy nonproliferating cells. 
Thus, in this work, we seek the answer to the following theoreotical 
biology question: can different Warburg Effect extents in diverse cell 
types be explained by different cellular objectives? There are some 
works aiming to correlate the Warburg Effect to cell objectives. For 
example, Archetti (2014) and Gatenby (1995) explained the Warburg 
Effect in cancer cells by stating that cancer cells gain growth advantages 
by generating lactate to “toxify” the healthy cells. Also, the demand for 

abundant lactate was used to explain the observed Warburg Effect in 
Sertoli cells (Oliveira et al., 2014). Here, we attempt to connect the 
Warburg Effect to three cell objectives (i.e. ATP production rate, ATP 
yield, and lactate production rate) by augmenting the previous minimal 
model (Möller et al., 2018; Schuster et al., 2015a). 

To take different cell objectives into account in our model, we resort 
to multi-objective optimization. Multi-objective optimization is widely 
applied to many domains such as economics. There are many methods to 
solve multi-objective optimization, and they can be generally divided to 
four categories: no-preference, priori, posteriori, and interactive. A 
common method, scalarizing, belongs to priori methods, and it com-
bines multiple objectives into a single objective in an optimization 
problem. In this work, we specifically leverage linear scalarization 
which takes a linear combination of the weighted objectives as one 
objective function (Gunantara, 2018). In addition, we systematically 
vary the weights of different cellular objectives to investigate the 
cellular pathway preferences of disparate cell types. This approach is 
similar to varying weights in the loss function of soft margin classifi-
cation (Cortes and Vapnik, 1995). Note that the ATP yield objective term 
is nonlinear. Thus, we denote our model as Nonlinear Multi-Objective 
FBA (NLMOFBA). The nonlinear ATP yield renders the entire objective 
function nonconvex. Compared to convex optimization, nonconvex 
optimization is generally more challenging to solve. 

Our contribution: Our work makes five major contributions. First, 
we adopt multi-objective optimization approach to investigate the 
Warburg Effect and overcome the limitation of relevant works that as-
sume a single cell type and a single objective. By doing so, we success-
fully associate different Warburg Effect extents to different cellular 

Fig. 1. A high-level explanation of the paper 
involving NLMOFBA. (a) We collapse a large 
metabolic network pertinent to the Warburg Ef-
fect to a minimal one by only selecting the central 
pathways. The minimal metabolic network is 
used throughout this paper. (b) We vary the ex-
tents of three cellular objectives (ATP rate, lactate 
rate, ATP yield) to model different cell types. For 
each cell type, we take a linear combination of its 
cellular objectives as the objective function of the 
corresponding optimization problem, and we find 
the optimal solution by our computation model 
NLMOFBA to determine the Warburg Effect 
extent. By following these steps, we explain 
different extents of the Warburg Effect in different 
cell types. (c) Using NLMOFBA, we also model 
more biological conditions and their impact on 
the Warburg Effect. Note that each part of Fig. 1 
corresponds to certain section(s) in this paper, 
and the section numbers are shown.   

Y. Zhang and D. Boley                                                                                                                                                                                                                        



Journal of Theoretical Biology 550 (2022) 111223

3

objectives. Second, we solve the associated nonconvex optimization 
problem via a customized searching method with reduced computa-
tional cost. Third, we derive and prove an interface equation that cap-
tures the impact of different cellular parameters on cell behaviors. 
Fourth, our model can output many key biological results consistent 
with the literature, including the complicated ones. Fifth, our model 
shows that glutaminolysis could induce the Warburg Effect in cancer 
cells. 

Outline. The remaining paper is organized as the follows: Section 2 
introduces the metabolic network, the nonlinear programming system, 
the implementation details of NLMOFBA, and the linear programming 
set up to investigate the impact of glutaminolysis; in Section 3.1, we 
construct a cellular objective map for selected cell types; in Section 3.2, 
we run NLMOFBA to unveil the cellular pathways in different cell types; 
in Section 3.3 and 3.4, we investigate the impact of key cellular pa-
rameters on the modelling results; in Section 3.5 and 3.6, we use 
NLMOFBA to reproduce key biological results of the Warburg Effect; in 
Section 3.7, we show the impact of incorporating glutaminolysis into our 
model; and in Section 4, we show that NLMOFBA results are consistent 
with the established Warburg Effect theory. A high-level understanding 
of our model NLMOFBA and its results are shown in Fig. 1. 

2. Methods 

2.1. Minimal metabolic network 

The metabolic network we investigate involves glycolysis, respira-
tion, fermentation, and biosynthesis. Glycolysis produces pyruvate from 
glucose after a series of reaction steps, which yield many intermediate 
metabolites such as G6P, F6P, FDP, G3P, etc (Li et al., 2015). In the 
respiration pathway, Acetyl-CoA is first converted from pyruvate, and 
then enters the TCA cycle. Subsequently, pyruvate is oxidized to carbon 
dioxide and water after about 10 basic steps involving intermediates 
such as citrate, isocitrate, succinate, fumarate malate, etc. Fermentation 
is a one-step reaction that directly converts lactate from pyruvate. We 
first collapse this large metabolic network to a minimal one for model-
ling the Warburg Effect (see Fig. 1 upper right corner for the minimal 
metabolic network). Specifically, we assume that the intermediate steps 
involved in glycolysis and respiration don’t impact our model because 
these steps have no impact on fluxes of the compounds of interest (e.g. 
glucose, pyruvate), energy (i.e. ATP), and lactate production. Note that 
the main goal of this paper is to provide a theoretical explanation of the 
Warburg Effect instead of rigorously modeling the detailed cellular 
mechanisms. According to Occam’s razor, in theoretical work, the 
simplest explanation is usually the best one to interpret complicated 
phenomenon. FBA, which doesn’t consider the detailed cellular mech-
anisms is compatible with the simplification to obtain the minimal 
model. In addition, the minimal metabolic network used in this work 
was previously proposed by theoretical biology experts (Möller et al., 
2018; Schuster et al., 2015a), and we mainly render their idea applicable 
to the scenarios with multiple cell types and multiple objectives by 
leveraging more complicated computation. Furthermore, we find at 
least two specific advantages of using the minimal metabolic network in 
this work. First, the impact of parameter selection and constraint setting 
on the model output is more obvious; thus, the model has high inter-
pretability, which is particularly important in theoretical biology aiming 
to explain a phenomenon. Second, a smaller metabolic network leads to 
faster execution of the computation program with high time complexity. 
Thus, the use of the minimal metabolic network in our work is well 
justified. 

In our minimal metabolic network, there are simply glycolysis re-
action, fermentation reaction, and respiration reaction. The glycolysis 
reaction refers to the conversion from glucose to pyruvate. The 
fermentation reaction refers to the conversion from pyruvate to lactate. 
The respiration reaction refers to the complete oxidation of pyruvate 
through the tricarboxylic acid (TCA) cycle. Respiration pathway or 

fermentation pathway includes the corresponding reaction plus the 
glycolysis reaction. 

Symbols v1, v2, and v3 denote the reaction rates of glycolysis, 
fermentation, and respiration respectively. Stoichiometries of all re-
actants and products are set in a way such that the stoichiometry coef-
ficient of pyruvate is always 1. This is different from the convention used 
by Schuster et al. (2015a), who kept the stoichiometry coefficient of 
glucose at 1. Note that the choice of pyruvate stoichiometry coefficient 
doesn’t impact the analysis as long as the ratio between the stoichiom-
etry coefficients of any other compound and pyruvate is fixed. 

2.2. Nonlinear programming 

Section 2.2 provides the final version of the nonlinear programming 
problem, followed by the derivation of the objective function, and the 
explanation of the constraints. 

Final nonlinear programming system:  

Minimize:  

Fobjective = − 32av1 − (b − 30a)v2 + 210(1 − a − b)
v2

v1
(objective function) (1)   

Subject to:  

α1v1 +α2v2 + α3(v1 − v2) ≤ T (total enzyme resource constraint) (2)    

v1 ≥ 0 (nonnegative glycolysis rate) (3)    

v2 ≥ 0 (nonnegative fermentation rate) (4)    

v1 − v2 ≥ 0 (nonnegative respiration rate) (5)      

Objective function derivation. Three cellular objectives are maxi-
mizing ATP production rate, maximizing lactate production rate, and 
maximizing ATP yield (Archetti, 2014; Barclay, 2017; Gatenby, 1995; 
Libretexts, 2020; Oliveira et al., 2014; Pfeiffer and Bonhoeffer, 2002; 
Pfeiffer et al., 2001; Vander Heiden et al., 2009). Combining three ob-
jectives results in the initial form of the objective function: 

Maximize: 

an1vATP + bn2vlactate + cn3YATP (6) 

Symbols a, b, and c are the respective objective weights of n1vATP 

(ATP production rate objective term),n2vlactate (lactate production rate 
objective term), and n3YATP (ATP yield objective term). Symbols vATP, 
vlactate, and YATP are ATP production rate, lactate production rate and ATP 
yield respectively. They are determined by: 

vATP = m1v1 +m3v3 (7)  

vlactate = v2 (8)  

YATP =
vATP

(v1/2)
= 2(m1 +m3v3/v1) (9) 

Fermentation does not generate ATP. Thus,vATP is the sum of the ATP 
generated from glycolysis and respiration (see (7)). m1 and m3 quantify 
the ATP production, and they are kept at 1 and 15 respectively because 
one glucose generates 2 and approximately 30 ATP via glycolysis and 
respiration respectively (Shlomi et al., 2011; Yetkin-Arik et al., 2019). 
Lactate generation rate is equal to the fermentation rate because only 
fermentation generates lactate (see (8)). ATP yield is the ATP produced 
per glucose consumed (see (9)). n1, n2, and n3 are constant coefficients to 
render the maximal possible changes of three objective terms roughly 
similar in magnitude in the base case (Section 3.2): 
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n1max(ΔvATP) ≈ n2max(Δvlactate) ≈ n3max(ΔYATP) (10) 

Constants n1, n2 and n3 are set to 2, 1, and 7 respectively, and these 
values are used throughout the paper. The constant coefficients render 
the simulation results more meaningful. 

By (7), (8), (9) and the constant values, we update the objective 
function in (6) with: 

Maximize: 

2a(v1 + 15v3)+ bv2 + 7c
(

2+
30v3

v1

)

. (11) 

We keep the sum of a, b, and c at 1. Thus, c is: 

c = 1 − a − b (12) 

Because of the steady state assumption in FBA, the fluxes of pyruvate 
are always balanced (i.e. v1 = v2 + v3). Thus, v3 is: 

v3 = v1 − v2 (13) 

After replacing c and v3 in (11) by (12) and (13), we update the 
objective function in (11) with: 

Maximize: 

32av1+(b − 30a)v2 − 210(1 − a − b)
v2

v1

+14(1 − a − b)(1 + 15).
(14) 

The last term is a constant when a and b are specified. Thus, the last 
term does not impact the optimal values of v1 (denoted as v1,opt) and v2 

(denoted as v2,opt). After eliminating the constant term and converting 
the objective function to its minimization form, we obtain the final 
version of the objective function in (1). 

Constraints. Constraint (2) is due to the limited total cellular 
enzyme resource T (Müller et al., 2014). Symbols α1, α2 and α3 denote 
the enzyme cost of v1, v2 and v3 respectively. Variable v3 is replaced by 
v1 − v2 due to the pyruvate mass balance. The value of α3 should be much 
higher than α1 and α2 because respiration involves many steps (Möller 
et al., 2018; Schuster et al., 2015a). Also, using a large α3 is consistent 
with the fact that glycolysis occurs 10–100 times faster than does 
respiration (Liberti and Locasale, 2016). 

Constraints (3), (4), and (5) are used to capture the irreversibility of 
three reactions. Reversible fermentation is uncommon, and thus not 
considered in this work. It was incorporated into a single-objective FBA 
model by Möller et al. (2018). 

2.3. NLMOFBA implementation 

Nonlinear Multi-Objective Flux Balance Analysis. 
(NLMOFBA) pseudocode is provided below. 
NLMOFBA Pseudocode:  

To model different cell types, we vary a and b in the objective 
function, and c is determined by (12). Our implementation could result 
in negative c. When it occurs, we mark the corresponding objective 
function as “invalid” and skip the iteration. We call the figures with the 
objective weights as their axes “objective maps” (e.g. Figs. 3 and 5). 

For each valid objective function, the optimal point (v1,opt , v2,opt) is 
determined by solving the corresponding nonlinear programming 
problem. The objective function in (1) is nonconvex over the feasible 

Fig. 2. Our minimal model after including the glutaminolysis pathway.  

Fig. 3. Cellular objective map for selected cell types. Healthy proliferating cells 
and healthy nonproliferating cells are abbreviated by HPC and HNPC respec-
tively. The objective weight c of each point can be determined by 1 − a − b. The 
level curves of c have a slope of − 1. The locations of three cell type examples in 
Fig. 1 are shown in Fig. 3. 
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region unless c = 0 (proof in Appendix Section II-1). To solve the non-
convex optimization problem, we search for the optimum over the 
feasible region exhaustively through discretization. Although robust, 
exhaustive search is computationally expensive, especially when the 
feasible region has a high dimension. The feasible region in our problem 
is two-dimensional. Exhaustively searching the two-dimensional 
feasible region results in a time complexity of O(n2), where n is the 
number of discretization points used for each dimension. Considering 
the two outer loops required by the multi-objective approach, the 
exhaustive search will make the program computationally expensive. 

Through the mathematical analysis of this specific problem, we 
obtain the following result: 

Result 1. The optimal point (v1,opt , v2,opt) is always at the boundary of the 
feasible region unless dFobjective

dv2
= 0 at (v1,opt , v2,opt) (See Appendix Section II-2 

for the proof). 
Thus, it is sufficient to search the boundary of the feasible region for 

(v1,opt , v2,opt) when dFobjective
dv2

∕= 0. Exhaustively searching the one- 
dimensional feasible region boundary reduces the time complexity to 
O(n), where n is the number of discretization points used for one 
dimension. Note that we can further reduce the computational cost 
based on Result 2: 

Result 2. The optimal point (v1,opt , v2,opt) is always on the right side of the 
feasible region (example of feasible region in Fig. 3) unless a = 0 and v2 = 0 
(See Appendix Section II-3 for the proof). 

We do not use Result 2 because it does not impact the time 
complexity of the program. However, Result 2 will be useful when we 
derive the interface equation in Section 3.4. 

Thus, we discretize the feasible region boundary, and we search for 
the minimal Fobjective over the discretized points and the corner points of 
the feasible region. Next, we check the uniqueness of the optimal point 
(v1,opt , v2,opt) along the feasible region boundary. If there is only one 

optimal point along the feasible region boundary and dFobjective
dv2 

is nonzero 
at (v1,opt , v2,opt), we know immediately that the optimal point is unique 
over the entire feasible region by Result 1. We also fill the objective map 
with the locations of (v1,opt , v2,opt) in the feasible region for all valid 
objective weight combinations. 

Some search methods such as golden-section search are generally 
more accurate (Press, 2007). But in this specific study, the 
discretization-based search method is sufficient to result in the exact 
values of the optimal solutions. 

The program is implemented in MATLAB. Fraction of fermentation 
ffermentation is used to quantify the Warburg Effect. ffermentation is defined as: 

ffermentation =
v2,opt

v2,opt + v3,opt
(15) 

Note that here, v2,opt +v3,opt is equal to v1,opt due to the pyruvate mass 
balance. The equation ffermentation = 1 indicates that cells use 100% 
fermentation. The equation ffermentation = 0 indicates that cells use 100% 
respiration. Any in-between values indicate that cells use mixed respiro- 
fermentation. ATP production rate, lactate production rate and ATP 
yield at the optimal solution can be determined by plugging v1,opt, v2,opt 

and v3,opt into (7), (8), and (9). 

2.4. Simulate more biological conditions 

Although the proposal that the Warburg Effect is completely caused 
by the malfunction of mitochondria has been disproved, less efficient 
mitochondria function is still one of the leading contribution factors that 
lead to the Warburg Effect (Harris and Johnson, 2019). The most 
obvious effect of the inefficient mitochondria function can be simulated 
by placing an upper bound on the rate of respiration, which occurs in the 
mitochondria matrix of eukaryotic cells. Note that limiting oxygen in the 

cellular environment is mathematically equivalent to the mitochondria 
malfunction since respiration requires oxygen while fermentation and 
glycolysis don’t. Because oxygen concentration can be very low in some 
tumor microenvironments (Emami Nejad et al., 2021), we include this 
constraint in our model to investigate its impact on the occurrence of the 
Warburg Effect. The impact of inefficient mitochondria and limiting 
oxygen can be formulated by. 

v3 ≤ min(X3,Voxygen) (16)  

where X3 is the upper bound of v3 due to mitochondria malfunction, and 
Voxygen is the oxygen upper bound due to low oxygen concentration. The 
variable v3 is replaced by v1 − v2 during the implementation due the 
pyruvate mass balance. 

Low glucose availability occurs in many cellular environments 
(Schuster et al., 2015a; Vander Heiden et al., 2009). Thus, we investigate 
the impact of the glucose availability on the Warburg Effect. Limited 
glucose availability places an upper bound Vglucose on v1: 

v1 ≤ Vglucose (17)  

2.5. Investigate the impact of glutaminolysis 

Glutamine is the most abundant amino acid in plasma, and it is an 
important energy source for tumor cells (Zhang et al., 2017). Thus, we 
looked at its impact on the occurrence of the Warburg Effect. We 
included glutamine in our model (Fig. 2). During energy production, 
glutamine is first converted to α-ketoglutarate, which is subsequently 
converted to malate via partial TCA cycle. Afterwards, malate is con-
verted to pyruvate (Zhang et al., 2017). We referred the conversion from 
glutamine to pyruvate as partial glutaminolysis for the remainder of the 
paper. Next, pyruvate is either converted to lactate via the fermentation 
reaction or fully oxidized via the respiration reaction (Dang, 2010; 
DeBerardinis and Cheng, 2009; Zhang et al., 2017). Since the metabolic 
network contains the fermentation and respiration reactions, it is suffi-
cient to only include partial glutaminolysis in the metabolic model. 

To model the partial glutaminolysis pathway in Fig. 2, we use v4, α4, 
and m4 to denote its reaction rate, enzyme cost, and ATP production 
respectively. m4 is set to 12 because partial glutaminolysis produces 
approximately 12 ATP per pyruvate generated (Le et al., 2012; Zhang 
et al., 2017). In this case study, we are only interested in the behaviors of 
the cancer cells. Thus, we drop the ATP yield term in the object function, 
and we set both a and b to 0.5. As shown in later analysis, such setting of 
the cellular objective weights corresponds to cancer cells. Then, the new 
optimization problem becomes:  

Minimize: 
Fobjective = − 0.5n1vATP − 0.5n2vlactate (objective function) (18) 

Subject to: 
v1 = v3 +v2 − v4 (pyruvate mass balance) (19) 
α1v1 +α2v2+α3v3 +α4v4 ≤ T (total enzyme resource constraint) (20) 
v1 ≥ 0 (nonnegative glycolysis rate) (21) 
v2 ≥ 0 (nonnegative fermentation rate) (22) 

v3 ≥ 0 (nonnegative respiration rate) (23) 
v4 ≥ 0 (nonnegative partial glutaminolysis rate) (24) 
v4 ≤ Vglutamine (glutamine availability constraint) (25)  

Here, vATP = (m1v1 + m3v3 + m4v4) = (v1 + 15v3 + 12v4), vlactate = v2, 
and values of n1 and n2 are the same as before. Note that the pyruvate 
mass balance is different from before due to the inclusion of glutamine 
into the system. To simulate the effect of limiting glutamine in cells, we 
place an upper bound constraint Vglutamine on v4. The above problem is 
linear programming because the ATP yield term is dropped. The opti-
mization problem is solved in MATLAB using the function “linprog”. 

2.6. Parameter value selection 

In most cases, we use the parameter values from the previous papers 
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(i.e. Möller et al., 2018; Schuster et al., 2015a,b), all of which provide 
justifications about the selection of these values. To make this paper self- 
contained, we also include justifications when these parameters appear. 
Interpretations of all symbols are in Table 1. Parameter settings of fig-
ures are described in their associated text and summarized in Table 2. 

3. Results 

3.1. Cellular objective map 

The fundamental FBA assumption is that cells have optimization 
objectives because of evolution (Orth et al., 2010). NLMOFBA is moti-
vated by the fact that different cells could have dissimilar objectives due 
to their varying cellular structures and biological purposes in living 
entities. Here, we propose an approximated cellular objective map for 
four selected cell types (cancer cells, healthy proliferating cells, healthy 
nonproliferating cells and Sertoli cells) (Fig. 3) to facilitate the 
remaining discussion. 

Cancer cells have heavy objectives of lactate and ATP production 
rates (Archetti, 2014; Gatenby, 1995; Pfeiffer and Bonhoeffer, 2002; 
Pfeiffer et al., 2001). Thus, their objective weight combinations are 
likely to stay in the region where a+b > 0.8 (or equivalently c < 0.2). 
Little evidence suggests that general healthy proliferating cells and 
healthy nonproliferating cells are “interested” in producing lactate. 
Thus, their objective weight combinations should stay within the region 
where b < 0.1. Healthy proliferating cells have a heavy objective of ATP 
production rate (Stouthamer, 1973; Vander Heiden et al., 2009). Thus, 
their objective weight combinations are likely to stay in the region 
where a > 0.5. Healthy nonproliferating cells have a heavy objective of 
ATP yield (Pfeiffer and Bonhoeffer, 2002; Pfeiffer et al., 2001). Thus, 
their objective weight combinations are likely to stay in the region 
where c > 0.5. Sertoli cell is an atypical healthy nonproliferating cell. It 
has a heavy objective of lactate production (Oliveira et al., 2014). Thus, 
its objective weight combinations are likely to stay in the region where 
b > 0.5. 

Note that the objective weights a, b and c are used to represent the 
relative importance of different objectives. Their absolute values are 
meaningless. Also, the objective map could have more dimensions if 
extra objectives are incorporated. In addition, more cell types can find 
their locations on the map given information about their objectives. 

Table 1 
Symbol interpretations.  

Symbols Interpretations 

a Weight of ATP production rate in the objective function 
b Weight of lactate generation in the objective function 
c Weight of yield in the objective function 
v1 Glycolysis reaction rate 
v2 Fermentation reaction rate 
v3 Respiration reaction rate 
v4 Partial glutaminolysis reaction rate 
m1 Glycolysis ATP output 
m3 Respiration ATP output 
m4 Partial glutaminolysis ATP output 
α1 Enzyme cost for glycolysis reaction 
α2 Enzyme cost for fermentation reaction 
α3 Enzyme cost for respiration reaction 
α4 Enzyme cost for partial glutaminolysis 
T Total cellular enzyme resource 
X3 Upper bound on respiration rate 
Vglucose Glucose availability 
Vglutamine Glutamine availability 
Voxygen Oxygen availability 
vATP Total ATP production rate 
YATP ATP yield per glucose 
vlactate Total lactate production rate 
ffermentation Fraction of fermentation 
Fobjective Objective function 
Δ Difference  

Table 2 
Parameter settings in figures and sections.  

Symbols Fig. 5 (Sec 
3.2) 

Fig. S1a ( 
Sec 3.2) 

Fig. S1b ( 
Sec 3.2) 

Fig. S1c ( 
Sec 3.2) 

Fig. S1d ( 
Sec 3.2) 

a 0:0.02:1 0.5 0.33 0.15 0 
b 0:0.02:1 0.5 0.33 0.15 0 
c 1 − a − b 0 0.34 0.7 1 
α1 0.5 0.5 0.5 0.5 0.5 
α2 0.5 0.5 0.5 0.5 0.5 
α3 10 10 10 10 10 
T 200 200 200 200 200 
m1 1 1 1 1 1 
m3 15 15 15 15 15 
min (X3,

Voxygen)

N/A N/A N/A N/A N/A 

Vglucose N/A N/A N/A N/A N/A 
Symbols Fig. 6b ( 

Sec 3.3) 
Fig. 7a ( 
Sec 3.4) 

Fig. 7b (Sec 
3.4) 

Fig. 7c ( 
Sec 3.4) 

Fig. 7d ( 
Sec 3.4) 

a 0:0.02:1 0:0.02:1 0:0.02:1 0:0.02:1 0:0.02:1 
b 0:0.02:1 0:0.02:1 0:0.02:1 0:0.02:1 0:0.02:1 
c 1 − a − b 1 − a − b 1 − a − b 1 − a − b 1 − a − b 
α1 0.5 Varying 0.5 0.5 0.5 
α2 0.5 0.5 Varying 0.5 0.5 
α3 25 10 10 Varying 10 
T 200 200 200 200 Varying 
m1 1 1 1 1 1 
m3 15 15 15 15 15 
min (X3,

Voxygen)

N/A N/A N/A N/A N/A 

Vglucose N/A N/A N/A N/A N/A 
Symbols Fig. 7e ( 

Sec 3.4) 
Fig. 8b ( 
Sec 3.5) 

Fig. 9c (Sec 
3.6) 

Fig. 10 ( 
Sec 3.7)  

a 0:0.02:1 0:0.02:1 0.5:0.01:1 0.5  
b 0:0.02:1 0:0.02:1 0 0.5  
c 1 − a − b 1 − a − b 1 − a 0  
α1 0.5 0.5 0.5 0.5  
α2 0.5 0.5 0.5 0.5  
α3 25 10 25 10  
T Varying 200 200 200  
m1 1 1 1 1  
m3 15 15 15 15  
min(X3,

Voxygen)

N/A 10 N/A N/A  

Vglucose N/A N/A 1:5:201 N/A  
α4 N/A N/A N/A 5  
m4 N/A N/A N/A 12  
Vglutamine N/A N/A N/A 0:1:40  

The notation A:B:C denotes an array from A to C with increments of B. 

Fig. 4. Feasible region for the constrained optimization with the base case 
parameter setting. Dashed arrows denote the constraint directions. 
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3.2. Base case 

The nonlinear programming problem is listed at the beginning of 
Section 2.2. The parameter setting of the base case is: α1 = α2 = 0.5, 
α3 = 10 and T = 200. The feasible region is shown in Fig. 4. The level 
curves corresponding to four objective weight combinations (a = b =

0.5, c = 0; a = b = 0.33, c = 0.34; a = b = 0.15, c = 0.7; a = b = 0, 
c = 1) are in Appendix (Fig. S1). 

NLMOFBA in Section 2.3 is implemented. ffermentation values and the 
locations of the optimal points in the feasible region are determined for 
all valid objective weight combinations (Fig. 5). With the base case 
parameter setting, the heavy lactate production objective (i.e. b > 0.5 or 
equivalently b > a + c) drives cells to use 100% fermentation, and cells 
with light lactate production objective (b < 0.5 or equivalently a +

c > b) use 100% respiration. 
Cells with a heavy lactate production objective always prefer the 

fermentation pathway because only fermentation reaction generates 
lactate. By contrast, cells with a heavy ATP yield objective always prefer 
the respiration pathway because respiration maximizes the ATP yield. 
The effect of ATP production rate objective on the cellular operating 
modes depends on the parameter setting. Möller et al. (2018) showed 

that the respiration pathway is preferred to maximize the ATP produc-
tion rate when the following condition holds: 

m1

m1 + m3
<

α1 + α2

α1 + α3
(26) 

If (26) holds, respiration pathway maximizes ATP rate and ATP yield 
simultaneously. In other words, the objectives of ATP rate and ATP yield 
are nonconflicting. If (26) becomes the other way, fermentation be-
comes the preferred pathway to maximize the ATP production rate. In 
this case, ATP production rate and ATP yield become conflicting. If (26) 
becomes an equality relation, Constraint (2) becomes parallel to the 
level curves of the ATP production rate (see (7)). 100% respiration, 
100% fermentation and any mixed respiro-fermentation points bound 
by (2) result in the maximal ATP production rate (Fig. S2). One way for 
this to happen is to change α3 from 10 to 15.5 while keeping the other 
parameters unchanged (Fig. S2). Thus, given limited cellular enzyme 
resource, the preferred pathway to maximize the ATP production rate is 
highly dependent on the cellular enzyme costs and numbers of generated 
ATP of reactions. 

Inequality (26) holds in the base case. Thus, both objectives of ATP 
production rate and ATP yield drive cells to use the respiration pathway. 

Fig. 5. (a) ffermentation for all valid objec-
tive weight combinations. Grey grids 
(ffermentation = 0) and black grids 
(ffermentation= 1) indicate 100% respiration 
and 100% fermentation respectively. 
White grids indicate the invalid region 
where c < 0. Selected levels of c (c = 0, 
0.5, or 1) are indicated by the grey 
dashed lines/dot. (b) Locations of the 
optimal points in the feasible region 
(Fig. 4) for all valid objective weight 
combinations. On the following cellular 
objective maps, ffermentation and locations 
of the optimal points will be included in 
one figure.   

Fig. 6. (a) Feasible region for the base case variant where the objectives of ATP yield and ATP production are conflicting. Dashed line represents Constraint (2) when 
α3 = 10. It rotates to become BC as α3 increases from 10 to 25. (b) ffermentation obtained for all valid objective weight combinations when objectives of ATP yield and 
ATP production rate are conflicting. The black grids enclosed by the grey quadrilateral represent the expanded fermentation region due to the change in α3. Locations 
of the optimal points in the feasible region are also shown. 
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Fig. 7. Interface investigation by (a) varying α1 while keeping α2 = 0.5, α3 = 10, and T = 200; (b) varying α2 while keeping α1 = 0.5, α3 = 10, and T = 200; (c) 
varying α3 while keeping α1 = 0.5, α2 = 0.5, and T = 200; (d) varying T while keeping α1 = 0.5, α2 = 0.5, and α3 = 10; and (e) varying T while keeping α1 =

0.5, α2 = 0.5, and α3 = 25. The objectives of ATP yield and ATP production are nonconflicting in Fig. 7d and conflicting in Fig. 7e. Fermentation regions are always 
on the right sides of the interfaces. 
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The results corresponding to the conflicting objectives of ATP produc-
tion rate and ATP yield will be discussed in Section 3.3. 

In the base case, 100% use of fermentation always occurs at point C 
(v1,opt = 200, v2,opt = 200, v3,opt = 0) of the feasible region (Fig. 4). Most 
optimal solutions leading to 100% respiration are at point B (v1,opt =

19.05, v2,opt = 0, v3,opt = 19.05) (Fig. 4). Point B and point C are 
bounded by the total cellular enzyme resource constraint. When a = 0 
and b ≤ 0.5, all points along the line AB (Fig. 4) are optimal and they are 
not bounded by the total cellular resource constraint. For these objective 
weight combinations, ATP yield outweighs the lactate production rate in 
the objective function. Any point along the line AB will maximize the 
ATP yield, and there is no incentive to maximize the ATP production 
rate because a = 0. 

3.3. Base case variant 

In this section, we investigate a base case variant where objectives of 
ATP production rate and ATP yield are conflicting (i.e. Inequality (26) 
changes the direction). One way for this to happen is to increase α3 from 
10 to 25 while maintaining values of other parameters in the base case. 
α3 is an intrinsic cellular parameter, and different cell types could have 
different α3 values. Besides the objective, different values of the intrinsic 
cellular parameters can also be used to distinguish among cell types. The 
parameter setting of the base case variant is α1 = α2 = 0.5, α3 = 25 and 
T = 200. Changing α3 alters the feasible region (Fig. 6a). The ffermentation 

and optimum locations are determined for all valid objective weight 
combinations (Fig. 6b). 

When the objectives of ATP yield and ATP production rate are con-
flicting, the fermentation region in Fig. 6b expands significantly relative 
to the region in Fig. 5a because the fermentation pathway becomes the 
preferable pathway to maximize the ATP production rate. As always, 
cells with a heavy lactate production objective prefer to use the 
fermentation pathway. Thus, only cells with a heavy ATP yield objective 
use the respiration pathway. 

3.4. Vary the key parameters 

Besides α3, other intrinsic cellular parameters α1, α2, and T could 
also vary in different cell types. Varying cellular parameters results in 
the change of the interface between the fermentation and respiration 
regions on the cellular objective map (e.g. the interfaces between the 
grey and black regions in Figs. 5a and 6b). As we have already seen, 

changing α3 from 10 to 25 alters the interface (Figs. 5a and 6b). We 
derive the general interface equation (See Appendix Section II-4 for the 
derivation). 

a =

(
α1T + α3T + 210(α1 + α3)(α1 + α2)

30α1T + 32α2T − 2α3T − 210(α1 + α3)(α1 + α2)

)

b

−
210(α1 + α3)(α1 + α2)

30α1T + 32α2T − 2α3T − 210(α1 + α3)(α1 + α2)

(27) 

Using the interface equation, we investigate the impact of varying α1, 
α2, α3, and T on the interfaces of fermentation and respiration regions 
(Fig. 7). We confirm the validity of the interface equation by running 
NLMOFBA for all the parameter settings used in Fig. 7. 

Increasing α3, decreasing α1, or decreasing α2 renders the fermen-
tation pathway more preferable to maximize the ATP production rate 
(Fig. 7a–c). Varying α1,α2 or α3 has a similar effect on the expansion 
trend of the fermentation region. Increasing T always results in the 
expansion of the fermentation region (Fig. 7d and e). Varying T has 
different effects on the expansion trend of the fermentation region when 
ATP objectives are conflicting and non-conflicting. 

3.5. Impact of mitochondria inefficiency or limited oxygen 

As reasoned in Section 2.4, inefficient mitochondria function or 
limited oxygen concentration in cellular microenvironment is modelled 
by placing an upper bound on v3. The corresponding nonlinear pro-
gramming problem is composed of (1), Constraints (2), (3), (4), (5), and 
(16). We set the upper bound at 10. Base case values of other parameters 
in Section 3.2 are used (α1 = α2 = 0.5, α3 = 10, and T = 200). The 
feasible region, ffermentation values, and locations of the optimal points in 
the feasible region are in Fig. 8. 

Compared to Fig. 5a, imposing an upper bound on v3 results in the 
expansion of 100% fermentation region and the formation of a large 
mixed respiro-fermentation region in Fig. 8b. Mixed respiro- 
fermentation occurs when the optimal solution is point J in Fig. 8a. 

3.6. Limited glucose availability 

Glucose, the most important energy substrate, could be limited in 
some cellular environments (Schuster et al., 2015a; Vander Heiden 
et al., 2009). To simulate this effect, we place an upper bound Vglucose on 
v1 (Constraint (17)). The corresponding nonlinear programming 

Fig. 8. (a) Feasible region after placing an upper bound on v3. (b) ffermentation and locations of the optimal points in the feasible region.  
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problem is composed of (1), Constraints (2), (3), (4), (5), and (17). We 
investigate the behavior of healthy proliferating cells and healthy non-
proliferating cells when subjected to different glucose availabilities by 
varying Vglucose from 1 to 201. Generally, healthy cells (proliferating or 
nonproliferating) have little incentive to maximize the lactate produc-
tion. Thus, we keep b at 0. Proliferating cells have heavy ATP rate 
objective while nonproliferating cells have heavy ATP yield objective. 
Thus, we vary a from 0.5 to 1, and set c = 1 − a to capture the behaviors 
of proliferating and nonproliferating cells. Other parameter values are 
from the base case variant in Section 3.3: α1 = α2 = 0.5, α3 = 25, and 
T = 200. ATP yield and ATP rate are conflicting objectives with this 
parameter setting. 

Depending on the value of Vglucose, the feasible region can be either a 
quadrilateral or a triangle (Fig. 9a and b). ffermentation and optimum lo-
cations corresponding to different glucose availabilities and objective 
functions are in Fig. 9c. Data points corresponding to two selected 
objective weight sets (a = 0.7, b = 0, c = 0.3; a = 1, b = 0, c = 0) 
(grey lines in Fig. 9c) are plotted in Fig. 9d to show the precise ffermentation 

values. 

A heavy ATP yield objective (c > 0.42 or equivalently a < 0.58) 
drives the cells to use the respiration pathway regardless of the glucose 
availability. The optimal solution for 100% respiration is at point B or H 
in Fig. 9a and b. A heavy ATP production rate objective (c < 0.42 or 
equivalently a > 0.58) leads to interesting cellular behaviors dependent 
on Vglucose. Severely limited glucose availability (Vglucose < 7.84) forces 
cells to use 100% respiration. Moderate glucose availability drives cells 
to use 100% respiration or mixed respiro-fermentation, depending on 
the exact values of the objective weights. Mixed respiro-fermentation 
corresponds to point F in Fig. 9a. Abundant glucose (Vglucose > 200) en-
ables cells to use 100% fermentation. 

3.7. Impact of partial glutaminolysis 

We include the partial glutaminolysis pathway into our model and 
set up the linear programming system shown in Section 2.5. Similar to 
the respiration pathway, the partial glutaminolysis pathway also in-
volves multiple steps. Thus, we expect its cost to be well above 0.5. In 
addition, we reason that partial glutaminolysis should be cheaper than 
respiration reaction because partial glutaminolysis involves fewer steps. 

Fig. 9. (a) and (b) Possible feasible regions. (c) ffermentation and locations of the optimal points in the feasible region for different healthy cells subjected to different 
glucose availabilities. d) ffermentation for selected objective weight sets. 
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Thus, we fix its cost α4 to be 5. To investigate the impact of glutamine 
availability on the occurrence of Warburg Effect, we vary Vglutamine from 
0 to 40 and obtain Fig. 10. 

As Vglutamine increases, the cellular operating mode shifts from respi-
ration to respiro-fermentation, and eventually fermentation (Fig. 10). 
Partial glutaminolysis is always preferred over respiration for ATP 
production because the former one has a much cheaper enzyme cost. As 
the availability of glutamine increases, partial glutaminolysis becomes 
more dominant and eventually outcompetes the respiration pathway. 

4. Discussion 

Previously, Schuster et al. (2015) and Möller et al. (2018) proposed a 
minimal model that explains the origin of the Warburg Effect from the 
energy perspective (i.e. ATP). To accomplish this, they varied cellular 
parameters (e.g. α3) and kept the same objective function of maximizing 
the ATP production rate. In this work, we extend the applicability of 
their model to multiple cell types by using the multi-objective optimi-
zation approach. Different cell types also show different extents of the 
Warburg Effect (Sun et al., 2019; Vander Heiden et al., 2009; Warburg, 
1956). Leveraging our NLMOFBA model, we show that such phenomena 
can be explained by different cellular objectives. Concretely, NLMOFBA 
connects the cellular pathway preference with the cellular objectives by 
overlaying the cellular operating modes on the cellular objective map. 
When investigating the impact of cellular objectives, we fix other 
cellular parameters whenever possible. Thus, in these case studies, the 
variations of the cellular behaviors are only due to different cells’ ob-
jectives captured by the computation model. Our model indicates that 
healthy nonproliferating cells almost always use respiration because of 
their objective to maximize the ATP yield, and Sertoli cells almost al-
ways use fermentation because of their objective to maximize the lactate 
production rate (Figs. 5–7). Because of the ATP rate objective, cancer 
cells and healthy proliferating cells could use either respiration or 
fermentation, depending on the parameter settings and their exact 
objective weight combinations (Figs. 5–7). Thus, we successfully show 
that the cellular objective can explain the Warburg Effect in different cell 
types (Liberti and Locasale, 2016; Oliveira et al., 2014; Sun et al., 2019; 
Vander Heiden et al., 2009; Warburg, 1956). 

Besides being capable of modelling multiple cell types, NLMOFBA 
can also output other biologically significant results consistent with the 
biology literature. For example, Fig. 8b is consistent with the fact that 
the compromised mitochondria function could result in the Warburg 

Effect (Harris and Johnson, 2019). Also, it shows that limited oxygen 
could also induce the Warburg Effect, which is consistent with the fact 
that cancer cells, which often prefer fermentation, are often in low- 
oxygen environment due to their lack of vascularization (Emami 
Nejad et al., 2021). Fig. 9c is supported by the observation that some 
cells use respiration when glucose is severely limited, but they switch to 
mixed respiro-fermentation or fermentation when glucose becomes 
more available (Vander Heiden et al., 2009). In this computation model, 
increasing glucose availability is mathematically equivalent to an 
upregulation of glycolytic enzymes. Both changes can be modeled by 
raising the upper bound on the glycolysis rate. Thus, Fig. 9c can also be 
supported by another established theory that an upregulation of glyco-
lytic enzymes could lead to the Warburg Effect (Asare-Werehene et al., 
2019). Thus, besides being significant in modelling the Warburg Effect, 
our multi-objective optimization approach can also be leveraged in 
modelling other cellular phenomena. 

In addition, this paper provides a general guideline to incorporate 
the nonlinear ATP yield term into FBA and avoid the high computational 
cost associated with nonconvex optimization. This is especially useful 
when a more complicated metabolic network and more reaction rates 
are involved. 

Furthermore, the linear programming variant of our model predicts 
that the Warburg Effect is related to glutaminolysis. Specifically, a lower 
enzyme cost of partial glutaminolysis could shift the cellular operating 
mode from respiration to fermentation. Although the causal relationship 
between partial glutaminolysis and Warburg Effect has not been estab-
lished in literature, glutamine is an important substrate for cancer cells, 
which frequently display the Warburg Effect (Damiani et al., 2017; 
Nguyen and Durán, 2018; Smith et al., 2016). One future direction is to 
include other key reaction pathways into the model to illustrate their 
impact on the Warburg Effect. For example, some researchers recently 
showed that glycogen shunt (i.e. the situation when glucose is shunted 
to glycogen and then consumed through glycolysis despite of the suffi-
cient glucose) is critical for cancer cell survival, and could help explain 
the Warburg Effect (Shulman and Rothman, 2017; Zois et al., 2014). 
Another key pathway is the pentose phosphate pathway, which occurs 
parallel to glycolysis. This pathway is vital for cancer cell growth 
(Vander Heiden et al., 2009). To implement these possible extensions, 
the objective functions can be altered to include more possible objec-
tives (e.g. biosynthesis rate); more reaction pathways and reaction rates 
can be added; and constraints can be altered. If the modified metabolic 
optimization problem is linear; then, the solution can be rapidly ob-
tained by a linear programming solver. If non-linearity is encountered, it 
may require mathematic analysis to determine the solution. 

One limitation of our model is that it is currently unable to model the 
dynamic competition between different cell types in a specific envi-
ronment because FBA is limited to model dynamic models. One possible 
solution is to use dynamic FBA (Mahadevan et al., 2002), which can be 
considered for future work. Also, due to the simplification of our mini-
mal model, we are unable to incorporate more glycolytic intermediates 
other than pyruvate into the model. As a result, we are only able to 
incorporate one constraint related to the glycolytic intermediate ho-
meostasis into our model (i.e. pyruvate mass balance). Future work can 
be performed to incorporate more intermediates into the FBA model and 
examine the impact of glycolytic intermediate homeostasis on the result 
(Kacser and Acerenza, 1993). To accomplish this, one can replace the 
one-step glycolysis and respiration by multiple steps involving more 
glycolytic intermediates. Then, one can include additional reaction 
rates, mass balance equations, and enzyme constraints into the model 
for optimization. 

5. Conclusion 

We proposed NLMOFBA, a multi-objective optimization model that 
explains the impact of cellular objectives on the Warburg Effect in 
different cell types. In addition, using NLMOFBA, we obtained other 

Fig. 10. ffermentation obtained with different glutamine availability upper bound 
Vglutamine. The partial glutaminolysis cost α4 is fixed at 5. Other parameter set-
tings: α1 = 0.5, α2 = 0.5, α3 = 10, T = 200. 
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important results that are generally consistent with the biology litera-
ture. We expect that our model can help readers understand the 
complicate Warburg Effect. One future direction is to include more 
pathways (e.g. glycogen shunt) so that the model can produce more 
biological results and guide the experimental research. Also, it will be 
interesting to investigate the impact of other cellular objectives such as 
biomass production on the cellular pathway preference. 
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Schuster, S., Boley, D., Möller, P., Stark, H., Kaleta, C., 2015b. Mathematical models for 
explaining the Warburg effect: a review focussed on ATP and biomass production. 
Biochem. Soc. Trans. 43 (6), 1187–1194. https://doi.org/10.1042/bst20150153. 

Shan, M., Dai, D., Vudem, A., Varner, J.D., Stroock, A.D., Hatzimanikatis, V., 2018. 
Multi-scale computational study of the Warburg effect, reverse Warburg effect and 
glutamine addiction in solid tumors. PLoS Comput. Biol. 14 (12), e1006584. 

Shestov, A.A., Liu, X., Ser, Z., Cluntun, A.A., Hung, Y.P., Huang, L., Kim, D., Le, A., 
Yellen, G., Albeck, J.G., Locasale, J.W., 2014. Quantitative determinants of aerobic 
glycolysis identify flux through the enzyme GAPDH as a limiting step. ELife 3. 
https://doi.org/10.7554/elife.03342. 

Shlomi, T., Benyamini, T., Gottlieb, E., Sharan, R., Ruppin, E., Papin, J.A., 2011. 
Genome-scale metabolic modeling elucidates the role of proliferative adaptation in 
causing the warburg Effect. PLoS Comput. Biol. 7 (3), e1002018. 

Shulman, R.G., Rothman, D.L., 2017. The glycogen shunt maintains glycolytic 
homeostasis and the Warburg effect in cancer. Trends Cancer 3 (11), 761–767. 

Smith, B., Schafer, X.L., Ambeskovic, A., Spencer, C.M., Land, H., Munger, J., 2016. 
Addiction to coupling of the Warburg Effect with glutamine catabolism in cancer 
cells. Cell Rep. 17 (3), 821–836. https://doi.org/10.1016/j.celrep.2016.09.045. 

Stouthamer, A.H., 1973. A theoretical study on the amount of ATP required for synthesis 
of microbial cell material. Antonie Van Leeuwenhoek 39 (1), 545–565. https://doi. 
org/10.1007/bf02578899. 

Sun, H., Chen, L., Cao, S., Liang, Y., Xu, Y., 2019. Warburg Effects in cancer and normal 
proliferating cells: two tales of the same name. Genomics, Proteomics Bioinf. 17 (3), 
273–286. https://doi.org/10.1016/j.gpb.2018.12.006. 

Vander Heiden, M.G., Cantley, L.C., Thompson, C.B., 2009. Understanding the Warburg 
Effect: the metabolic requirements of cell proliferation. Science 324 (5930), 
1029–1033. https://doi.org/10.1126/science.1160809. 

Vera, J., De Atauri, P., Cascante, M., Torres, N.V., 2003. Multicriteria optimization of 
biochemical systems by linear programming: Application to production of ethanol by 
Saccharomyces cerevisiae. Biotechnol. Bioeng. 83 (3), 335–343. https://doi.org/ 
10.1002/bit.10676. 

Warburg, O., 1956. On the origin of cancer cells. Science 123 (3191), 309–314. https:// 
doi.org/10.1126/science.123.3191.309. 

Yetkin-Arik, B., Vogels, I.M.C., Nowak-Sliwinska, P., Weiss, A., Houtkooper, R.H., Van 
Noorden, C.J.F., Klaassen, I., Schlingemann, R.O., 2019. The role of glycolysis and 
mitochondrial respiration in the formation and functioning of endothelial tip cells 
during angiogenesis. Sci. Rep. 9 (1), 1–14. https://doi.org/10.1038/s41598-019- 
48676-2. 

Zhang, W., Li, H., Ogando, D.G., Li, S., Feng, M., Price, F.W., Tennessen, J.M., 
Bonanno, J.A., 2017. Glutaminolysis is essential for energy production and ion 
transport in human corneal endothelium. EBioMedicine 16, 292–301. https://doi. 
org/10.1016/j.ebiom.2017.01.004. 

Zois, C.E., Favaro, E., Harris, A.L., 2014. Glycogen metabolism in cancer. Biochem. 
Pharmacol. 92 (1), 3–11. 

Y. Zhang and D. Boley                                                                                                                                                                                                                        

https://doi.org/10.1016/j.jtbi.2022.111223
https://doi.org/10.1016/j.jtbi.2022.111223
https://doi.org/10.1016/j.jtbi.2013.09.017
https://doi.org/10.1016/j.jtbi.2013.09.017
https://doi.org/10.1016/b978-0-12-813209-8.00035-2
https://doi.org/10.1016/b978-0-12-813209-8.00035-2
https://doi.org/10.1007/s10974-017-9467-7
https://doi.org/10.1007/bf00994018
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0030
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0030
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0030
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0030
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0030
https://doi.org/10.4161/cc.9.19.13302
https://doi.org/10.1038/onc.2009.358
https://doi.org/10.1038/onc.2009.358
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0045
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0045
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0045
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0045
https://pubmed.ncbi.nlm.nih.gov/7664293/
https://pubmed.ncbi.nlm.nih.gov/7664293/
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0055
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0055
https://doi.org/10.1016/b978-0-12-801238-3.11342-x
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0065
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0065
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0070
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0070
https://doi.org/10.1016/j.cmet.2011.12.009
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0080
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0080
https://doi.org/10.1016/j.tibs.2015.12.001
https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%253A_General_Biology_(Boundless)/7%253A_Cellular_Respiration/7.4%253A_Oxidative_Phosphorylation/7.4C%253A_ATP_Yield
https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%253A_General_Biology_(Boundless)/7%253A_Cellular_Respiration/7.4%253A_Oxidative_Phosphorylation/7.4C%253A_ATP_Yield
https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%253A_General_Biology_(Boundless)/7%253A_Cellular_Respiration/7.4%253A_Oxidative_Phosphorylation/7.4C%253A_ATP_Yield
https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%253A_General_Biology_(Boundless)/7%253A_Cellular_Respiration/7.4%253A_Oxidative_Phosphorylation/7.4C%253A_ATP_Yield
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0095
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0095
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0100
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0100
https://doi.org/10.1016/j.jtbi.2013.11.015
https://doi.org/10.20517/cdr.2018.08
https://doi.org/10.1002/btpr.193
https://doi.org/10.1002/btpr.193
https://doi.org/10.1002/med.21325
https://doi.org/10.1002/med.21325
https://doi.org/10.1038/nbt.1614
https://doi.org/10.1524/zpch.2002.216.1.051
https://doi.org/10.1524/zpch.2002.216.1.051
https://doi.org/10.1126/science.1058079
https://doi.org/10.1126/science.1058079
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0140
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0140
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0145
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0145
https://doi.org/10.1042/bst20150153
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0155
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0155
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0155
https://doi.org/10.7554/elife.03342
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0165
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0165
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0165
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0170
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0170
https://doi.org/10.1016/j.celrep.2016.09.045
https://doi.org/10.1007/bf02578899
https://doi.org/10.1007/bf02578899
https://doi.org/10.1016/j.gpb.2018.12.006
https://doi.org/10.1126/science.1160809
https://doi.org/10.1002/bit.10676
https://doi.org/10.1002/bit.10676
https://doi.org/10.1126/science.123.3191.309
https://doi.org/10.1126/science.123.3191.309
https://doi.org/10.1038/s41598-019-48676-2
https://doi.org/10.1038/s41598-019-48676-2
https://doi.org/10.1016/j.ebiom.2017.01.004
https://doi.org/10.1016/j.ebiom.2017.01.004
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0215
http://refhub.elsevier.com/S0022-5193(22)00221-1/h0215

	Nonlinear multi-objective flux balance analysis of the Warburg Effect
	1 Introduction
	2 Methods
	2.1 Minimal metabolic network
	2.2 Nonlinear programming
	2.3 NLMOFBA implementation
	2.4 Simulate more biological conditions
	2.5 Investigate the impact of glutaminolysis
	2.6 Parameter value selection

	3 Results
	3.1 Cellular objective map
	3.2 Base case
	3.3 Base case variant
	3.4 Vary the key parameters
	3.5 Impact of mitochondria inefficiency or limited oxygen
	3.6 Limited glucose availability
	3.7 Impact of partial glutaminolysis

	4 Discussion
	5 Conclusion
	Declaration of Competing Interest
	Acknowledgment
	Appendix A Supplementary data
	References


